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Machine learning
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Machine learning

3Choosing the right estimator?

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html


Several approaches of the data science
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Data
Science

Data-mining

Machine learning
• Reinforcement learning
• Unsupervised learning 

(clustering)
• Supervised learning

Optimization 
algorithms



1. Reinforcement learning
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RL is learning from experiences. 

RL teaches an agent how to choose an action from its action space, within 
a particular environment, in order to maximize rewards over time



Game theory: Brute force VS RL
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1997 – Deep Blue - IBM 2016 
Alpha Go

35 ^ 80 250 ^ 150

Number of possible sequences:



How to find the best local move for wining the whole game?

(1) Deep neural networks supervised training

(2) Monte Carlo tree search programs

(3) Alpha-go Zero (2017) : only reinforcement from scratch

Mastering the game of Go
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2. Unsupervised learning (clustering)
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Unsupervised ML learns from a dataset without any labels. 
The algorithm can automatically classify or categorize the 
input data. 

The application of unsupervised learning mainly includes 
cluster analysis, association rule or dimensionality reduce.



Social Network Analysis
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Social Network Analysis
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Citation network of journals Co-occurrence network of terms in COVID-19 articles



3. Supervised learning
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Supervised ML learns from a trained tagged dataset, 
builds a function, predicts the output based on the 
function.

f(x) ?

(i) quantitative variables: 
→ Regression  

(ii) qualitative variables: 
→ Classification



3. Supervised learning
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The training dataset often consists of pairs of an input vector (or 
scalar) and the corresponding output vector (or scalar), the output of 
the function can be regression or classification.

Regression     Classification
new xi

yi ?



Optimization of the learning
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j features

wj



Estimation of the learning
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wj

training
set

testing
set

wj



Cross Validation

If large dataset, CV is need by repeating training/testing procedure under 
k-folder: partitions formed by splitting into k non-overlapping subsets.



Overfitting
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= the production of an analysis that corresponds too closely or exactly to a 
particular set of data, and may therefore fail to fit additional data or predict 
future observations reliably.

high biais
underfitting

just right
low biais

overfitting



Bias-variance tradeoff
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Overfitting
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Overfitting in classification
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Learning curve: performance VS time
20

20



Regularization by penalties
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We can introduce a weight decay to degrade the learning.
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j features

wj

Choice of descriptors / features

Zhang et al. Curr. Opin. Solid State Mater. Sci. (2020)

Rational design of high-entropy ceramics based on machine 

learning – A critical review



Feature importance
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Marchwiany et al.   Materials (2020)

Surface-Related Features Responsible for Cytotoxic Behavior of 

MXenes Layered Materials Predicted with Machine Learning 

Approach



Standardization
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Standardization
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Moyenne: 𝜇 =
1

𝑁
σ𝑖=1
𝑁 𝑥𝑖

𝑧𝑖 =
𝑥𝑖 − 𝜇

𝜎

Ecart type: 𝜎 = 𝑉

Variance: 𝑉 =
1

𝑁
σ𝑖=1
𝑁 𝑥𝑖 − 𝜇 2



Why is standardisation important?
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Feature importance

27

Marchwiany et al.   Materials (2020)

Surface-Related Features Responsible for Cytotoxic Behavior of 

MXenes Layered Materials Predicted with Machine Learning 

Approach



Pair correlation matrix
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Xie et al.   Npj Comp Mater (2021)

Mechanistic data-driven prediction of as-built mechanical

properties in metal additive manufacturing

Esperance: 𝐸[𝑋] = σ𝑖=1
∞ 𝑥𝑖 𝑝𝑖

Covariance: Cov(𝑋, 𝑌) =

 𝑖  𝑗
𝑥𝑖𝑦𝑗P 𝑋 = 𝑥𝑖 et 𝑌 = 𝑦𝑗 − 𝐸 𝑋 𝐸[𝑌]



One-Hot Encoding the categorical variables
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otherwise known as dummy variables, is a 
method of converting categorical variables 
into several binary columns

j features

wj



Choice of descriptors
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Improved performance with embedded physics
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Witman et al.   

Chem Mater (2021)

Data-Driven Discovery and Synthesis of 

High Entropy Alloy Hydrides with Targeted 

Thermodynamic Stability



Graphs description
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Isayev et al.   

Nature Com (2017)

Universal fragment descriptors for predicting

properties of inorganic crystals

Xie et al.   

Phys Rev Lett (2018)

3-D Crystal Graph Convolutional Neural Networks 

for an Accurate and Interpretable Prediction of 

Material Properties



Interatomic potential models
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Mueller et al.   

J Chem Phys (2020)

3-D Machine learning for interatomic

potential models

Becker et al.   

Sci report (2022)

Unsupervised topological learning

approach of crystal nucleation
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