

Initiation à l'apprentissage automatique en science des matériaux2. Fundamentals in Machine Learning

J.-C. Crivello, LINK : <u>jean-claude.crivello@cnrs.fr</u> C. Barreteau, ICMPE : <u>celine.barreteau@cnrs.fr</u> S. Junier, ICMPE : <u>sebastien.junier@cnrs.fr</u>

https://link.cnrs.fr/ML/

Machine learning

Machine learning

Several approaches of the data science

1. Reinforcement learning

RL is learning from experiences.

RL teaches an <u>agent</u> how to choose an action from its <u>action</u> space, within a particular <u>environment</u>, in order to maximize <u>rewards</u> over time

Game theory: Brute force VS RL

250 ^ 150

Number of possible sequences:

2016

Mastering the game of Go

How to find the best local move for wining the whole game?

- (1) Deep neural networks supervised training
- (2) Monte Carlo tree search programs
- (3) Alpha-go Zero (2017) : only reinforcement from scratch

2. Unsupervised learning (clustering)

Unsupervised ML learns from a dataset without any labels. The algorithm can automatically classify or categorize the input data.

Cluster2

The application of unsupervised learning mainly includes cluster analysis, association rule or dimensionality reduce.

Social Network Analysis

182011 LinkedIn - Get your network map at inmaps linkedinlabs.com

Social Network Analysis

Co-occurrence network of terms in COVID-19 articles

Citation network of journals

3. Supervised learning

Supervised ML learns from a trained tagged dataset, builds a function, predicts the output based on the function.

f(x) ?
 (i) quantitative variables:

 → Regression
 (ii) qualitative variables:
 → Classification

3. Supervised learning

The training dataset often consists of pairs of an input vector (or scalar) and the corresponding output vector (or scalar), the output of the function can be **regression** or **classification**.

Optimization of the learning

Cross Validation

Linear Regression

40

If large dataset, CV is need by repeating training/testing procedure under *k*-folder: partitions formed by splitting into *k* non-overlapping subsets.

Overfitting

= the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit additional data or predict future observations reliably. n

Bias-variance tradeoff

Overfitting in classification

Underfitting

Appropriate fitting

Overfitting

Learning curve: performance VS time

20

Regularization by penalties

We can introduce a weight decay to degrade the learning.

 $\operatorname{error}(w) = \operatorname{MSE}_{train} + \lambda w^{\mathrm{T}} w$

21

Choice of descriptors / features

Zhang et al. Curr. Opin. Solid State Mater. Sci. (2020) Rational design of high-entropy ceramics based on machine learning – A critical review

Feature importance

Marchwiany et al. Materials (2020)

Surface-Related Features Responsible for Cytotoxic Behavior of MXenes Layered Materials Predicted with Machine Learning Approach

Standardization

Standardization

Why is standardisation important?

Feature importance

Marchwiany et al. Materials (2020)

Surface-Related Features Responsible for Cytotoxic Behavior of MXenes Layered Materials Predicted with Machine Learning Approach

Pair correlation matrix

Esperance: $E[X] = \sum_{i=1}^{\infty} x_i p_i$

Covariance: Cov(X, Y) =

$$\sum_{i} \sum_{j} x_{i} y_{j} P(X = xi \text{ et } Y = yj) - E[X]E[Y]$$

Xie et al. Npj Comp Mater (2021) Mechanistic data-driven prediction of as-built mechanical properties in metal additive manufacturing

One-Hot Encoding the categorical variables

otherwise known as dummy variables, is a method of converting categorical variables into several binary columns

Human-Readable

Machine-Readable

Pet	Cat	Dog	Turtle	Fish
Cat	1	0	0	0
Dog	0	1	0	0
Turtle	0	0	1	0
Fish	0	0	0	1
Cat	1	0	0	0

Choice of descriptors

Improved performance with embedded physics

Witman *et al.* Chem Mater (2021) Data-Driven Discovery and Synthesis of High Entropy Alloy Hydrides with Targeted Thermodynamic Stability

Graphs description

Isayev et al. Nature Com (2017) Universal fragment descriptors for predicting properties of inorganic crystals

Xie *et al*. Phys Rev Lett (2018)

3-D Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties

Interatomic potential models

Mueller et al.J Chem Phys (2020)3-D Machine learning for interatomicpotential models

Becker et al. Sci report (2022) Unsupervised topological learning approach of crystal nucleation